Reasoning About Transfinite Sequences
نویسندگان
چکیده
We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-sequences but interact synchronously with the system in order to restrict their behaviors. We show that the satisfiability problem for the logics working on ω-sequences is expspace-complete when the integers are represented in binary, and pspace-complete with a unary representation. To do so, we substantially extend standard results about LTL by introducing a new class of succinct ordinal automata that can encode the interaction between the different quantitative temporal operators.
منابع مشابه
Reasoning about transfinite sequences (extended abtract)
We introduce a family of temporal logics to specify the behavior of systems with Zeno behaviors. We extend linear-time temporal logic LTL to authorize models admitting Zeno sequences of actions and quantitative temporal operators indexed by ordinals replace the standard next-time and until future-time operators. Our aim is to control such systems by designing controllers that safely work on ω-s...
متن کاملOn ( transfinite ) small inductive dimension of products ∗
In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.
متن کاملFunctional interpretation and inductive definitions
Extending Gödel’s Dialectica interpretation, we provide a functional interpretation of classical theories of positive arithmetic inductive definitions, reducing them to theories of finite-type functionals defined using transfinite recursion on well-founded trees.
متن کاملArithmetic of plane Cremona transformations and the dimensions of transfinite heterotic string space-time
It is shown that the two sequences of characteristic dimensions of transfinite heterotic string space-time found by El Naschie can be remarkably well accounted for in terms of the arithmetic of self-conjugate homaloidal nets of plane algebraic curves of orders 3 to 20. A firm algebraic geometrical justification is thus given not only for all the relevant dimensions of the classical theory, but ...
متن کاملOn Transfinite Knuth-Bendix Orders
In this paper we discuss the recently introduced transfinite Knuth-Bendix orders. We prove that any such order with finite subterm coefficients and for a finite signature is equivalent to an order using ordinals below ω, that is, finite sequences of natural numbers of a fixed length. We show that this result does not hold when subterm coefficients are infinite. However, we prove that in this ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 18 شماره
صفحات -
تاریخ انتشار 2005